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Random Walks on a Fractal Solid

John J. Kozak1
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It is established that the trapping of a random walker undergoing unbiased,
nearest-neighbor displacements on a triangular lattice of Euclidean dimension
d=2 is more efficient (i.e., the mean walklength (n) before trapping of the ran-
dom walker is shorter) than on a fractal set, the Sierpinski tower, which has a
Hausdorff dimension D exactly equal to the Euclidean dimension of the regular
lattice. We also explore whether the self similarity in the geometrical structure
of the Sierpinski lattice translates into a ``self similarity'' in diffusional flows, and
find that expressions for (n) having a common analytic form can be obtained
for sites that are the first- and second-nearest-neighbors to a vertex trap.
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1. INTRODUCTION

In the last decade much work have been done examining problems of
diffusion on percolation networks.(1�5) For example, Gefen, Ahrony and
Alexander(1) proved that diffusion on percolation networks is slower than
on Euclidean ones, and, in particular, the mean-square displacement of a
random walker is given in their work by

(r2(t)) tt2�(2+%)

with %=0.8 in dimension d=2 for percolating networks versus %=0 for
the corresponding Euclidean one.

Complementary to the above work has been studies of random walks
on lattices of fractal dimension(6�11) with traps. A random walk on a lattice
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with N sites can be characterized by an N_N Markov transition matrix,
denoted here by P. The (i, j)th element of this matrix, p(i, j), is the prob-
ability, conditional on being in state i at any time, such that the next step
of the random walk takes the walker to state j. The sites corresponding to
state i on a lattice are traps if the sum of the elements p(i, j), j=1,..., N of
row i if P is less than 1. There is then a nonzero probability that the walk
will end if it reaches state i. The case studied here is that of a deep trap;
all the elements p(i, j) are zero, so that the walk ends with certainty when-
ever it reaches state i.

The mean walklength (n) before trapping on the Sierpinski gasket, a
two-dimensional uncountable set with zero measure and Hausdorff dimen-
sion

D=log 3� log 2=1.584962

was found to be distinctly longer than (n) calculated for the corresponding
d=2 triangular lattice.(6�8) And, values of (n) calculated for random
walks on the Menger sponge, a symmetric fractal set in three dimensions
of Hausdorff dimension

D=log 20� log 3=2.7268...

were found to be longer than on the corresponding d=3 simple cubic lattice
(but shorter than on the corresponding d=2 square-planar lattce).(9�11)

Evolution profiles generated from solutions to the stochastic master
equation for the trapping problem were also presented in refs. 6�8. The
mean walklength (n) is related (via the lattice valency) to the reciprocal
of the smallest eigenvalue of the time-dependent solution to the stochastic
master equation, but the full profiles showed that the conclusion was valid
in the initial stages of evolution where more than one eigenvalue con-
tributed significantly to the temporal behavior of the system.

The question posed in the present contribution can now be stated. In
the studies referenced above, fractal sets were studied which were charac-
terized by a Hausdorff dimension intermediate between the dimensionality
of two, regular Euclidean lattices. It is therefore of interest to calculate
(numerically-exact) values of the mean walklength (n) of a random
walker on a fractal set whose Hausdorff dimension D happens to be the
same as the Euclidean dimension d of a companion lattice, and to deter-
mine quantitatively whether (or not) the (n) values on the fractal set are
larger (and the corresponding decay times longer) than on the comparison,
Euclidian lattice.
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2. RESULTS

Figure 1 illustrates a three-dimensional generalization of the Sierpinski
gasket. To construct this lattice, sometimes called the Sierpinski tower, one
proceeds in the same way that one constructs the planar Sierpinski gasket, only
here one starts with a regular tetrahedron and then removes a half-size, upside-
down regular tetrahedron. On each of the resulting tetrahedra, one repeats
this procedure, and generates, eventually, the structure displayed in Fig. 1.

The Hausdorff dimension of this self-similar construction can be deter-
mined by noting that one has N=4 pieces in the first step of the iteration,
each of size r=1�2, so that

D=log N� log(1�r)=log 4� log 2=2

Fig. 1. The Sierpinski tower (see text).
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a fractal dimension that happens to be an integer, one less than the embed-
ding Euclidean dimension, d=3.

Each node of the structure displayed in Fig. 1 is of coordination v=6,
except the vertex points which are of coordination v=3. To make a direct
comparison with the companion Euclidean lattice, a triangular lattice, all
nodes of which are of uniform coordination v=6, one imposes the condi-
tion that if the random walker happens to land on a vertex site in Fig. 1,
it can either move away from that site (in one of three directions) or take
three ``virtual'' steps, simply remaining at that site.

Displayed in Table 1 are numerically-exact values of (n) for the D=2
Sierpinski lattice. N denotes, for each generation g, the total number of
sites for which calculations were performed. The ratio of prime numbers
reported in each case is the exact result, with the decimal value given to the
nearest 1�1000th to facilitate comparison with the values of (n) calculated
for a companion d=2, v=6 triangular lattice and a d=3, v=6 simple
cubic lattice. The latter values were computed from asymptotic expressions
which give the ``best-fit'' to the numerically-exact values of (n) reported in
the literature(12�13) (see later text).

The direct comparisons are for the N values, N=10, 34, 130, and 514.
Placing the trap at the midpoint base site at each stage in the self-similar
generation of Fig. 1 yields the smallest value of (n); placing the trap at the
vertex site yields the largest values of (n) . One finds that (n) for the

Table 1. Comparison of (n) Values for d�2 Lattices

Sierpinksi Lattice
D=2; v=6 Triangular Simple Cubic

Lattice Lattice
N Vertex Trap Midpoint Base Trap d=2; v=6 d=3; v=6

10
83
22 =20.75

(7)(17)
(22)(3)

=9.916 9.382 5.846

34
(3)(3049)
(23)(11)

=103.943
(33)(461)
(23)(11)

=47.147 42.032 37.393

130
(3)(23)(61)(97)

(24)(43)
=593.420

(3)(60821)
(24)(43)

=265.208 206.348 159.566

517
(11)(13)(127)(353)

(25)(3)(19)
=3514.711

(179)(839)
(25)(3)

=1564.386 1007.078 693.933
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Sierpinski ``tower'' is always greater than the (n) value calculated on the
companion d=2 triangular lattice and, certainly, for the d=3 simple cubic
lattice. This answers the question posed earlier and is the principal result
of this study.

Whereas the comparisons in Table 1 for fixed N were based on
asymptotic expressions for (n) for the companion Euclidean lattices,
numerically-exact values of the mean walklength were reported in earlier
work for symmetric d=2, v=6 triangular lattices subject to a variety of
boundary conditions.(12) Listed in Table 2 are the values of (n) for a tri-
angular lattice subject to confining boundary conditions. The latter bound-
ary condition permits the generation of the full triangular lattice from the
``unit cells'' displayed in Fig. 2, and is realized by imposing the constraint
that when a walker attempts to step outside the unit cell from a boundary
site, it simply returns to the site from whence it came. Note that the result
calculated for the N=19, d=2, v=6 triangular lattice coincides exactly
with the value calculated for the (smaller) N=10, D=2, v=6 Sierpinski
lattice with a trap located at the vertex. This result complements the
asymptotic results reported in Table 1. The further (numerically-exact
results reported in Table 2 document further the conclusion that values of
(n) calculated for the D=2 lattices are systematically larger than values
calculated for the companion d=2 lattice.

Table 2. (n) Values for d=2, v=6 Triangular Lattices

N Centrosymmetric Trap

19
83
22=20.75

37
(5)(149)

24 =46.563

61
(22)(33)(19)(53)

(5)(257)
=84.635

91
(33)(863)(3833)
(22)(5)(13)(281)

=135.829

127
(33)(11)(23)(43)(38971)

(22)(7)(2035757)
=200.822

169
(32)(23)(47)(2713)(91009)

(25)(7)(647)(59159)
=280.175
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Fig. 2. Unit cells of the d=2, v=6 triangular lattice; the symmetry-distinct sites are denoted
by integers.

3. SELF SIMILARITY

The figure displayed in Fig. 1 is self similar. A natural question is
whether this self similarity translates into a ``self similarity'' in the diffu-
sional flows, as monitored by values of the (n) . A first response to this
question can be given by placing a trap at the top vertex site, and calculat-
ing changes in the values of (n) at the sites which are the first- and
second-nearest neighbor sites to this vertex site as one considers sequentially
the first (N=10), second (N=34), third (N=130), fourth (N=517),..., g th
generation lattice.
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Table 3. Comparison of (n) i Values for First- and Second-Nearest Neighbors
for the Sierpinski vs. Triangular Lattice

2nd

N 1st corner site midpoint base site

D=2 Sierpinski Lattice

10 (2)(32)
(32)(5)

2
=22.5

(3)(29)
(22)

=21.75

34 (2)(3)(11)
(32)(21)

2
=94.5

(3)(109)
(22)

=81.75

130 (2)(3)(43)
(32)(5)(17)

2
=382.5

(3)(429)
(22)

=321.75

514 (2)(3)(171)
(32)(341)

2
=1534.5

(3)(1709)
(22)

=1281.5

d=2 Triangular Lattice

19 18
(32)(5)

2
=22.5

(3)(29)
(22)

=21.75

37 36
(33)(7)

22 =47.25
(3)(112)

(23)
=45.375

61 60
(32)(2297)

257
=80.437

(32)(5)(877)
(2)(257)

=76.780

91 90
(32)(17)(19)(613)

(22)(13)(281)
=121.954

(3)(103)(10973)
(23)(13)(281)

=116.023

127 126
(3)(5)(13)(29)(123677)

(2)(2035757)
=171.777

(3)(7)(23)(479)(5741)
(22)(2035757)

=163.111

169 168
(3)(11733154931)
(22)(647)(59159)

=229.906
(3)(7)(61)(239)(218081)

(23)(647)(59159)
=218.046

Let us denote the first nearest-neighbor site by n, and the two, second
nearest-neighbor sites, the corner site and the midpoint base site, by c and
m, respectively. Displayed in Table 3 are the numerically-exact values of
(n) for the first-nearest neighbor site n, and the two second-nearest sites,
viz., c and m, for the first four generations of the Sierpinski tower.

The values reported in Table 3 for the three cases (n, c, m) can be
generated from the following expressions:

n site:

(n) =(2 v3)[4 g&1f (n)& 1
3 (4 g&1&1)]
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with f (n)=3;

c site:

(n)=
32

2 {4 g&1f (c)+
1
3

(4 g&1&1)=
with f (c)=5;

m site:

(n)=
3
22 {4 g&1f (m)&

7
3

(4 g&1&1)=
with f (m)=29.

As is evident, the three expressions for (n) have a common analytic
form, and it is reasonable to suppose that this commonality is a conse-
quence of the underlying self-similarity in the Sierpinski fractal.

Similar calculations for the first six generations of the d=2, v=6 tri-
angular lattice were performed; the results are also displayed in Table 3.
Several points are worth noting. First, analytic expressions similar to those
reported above could not be found for the triangular lattice. Second, as
expected from the results presented in Table 1, values of (n) for the sites
n, c and m for the g=1 generation are identical for the N=10 fractal lat-
tice and the N=19 Euclidean lattice; however, on comparing results for
the g=2 generation, one finds already that the value of (n) for the corner
site on the N=37 triangular is half the value of (n) for the corner site on
the N=34 Sierpinski lattice, demonstrating again the consequences of
modifying the regular Euclidean lattice structure, even in a self-similar way.
Third, from these results, and those reported earlier, it is clear that the
values of (n) for the Sierpinski lattice have a stronger N-dependence than
the (N ln N )-dependence one expects for d=2 Euclidean lattices (see
following section).

4. CONCLUSIONS

The role of lattice dimensionality and coordination in influencing the
efficiency of trapping of a random walker on regular, Euclidean lattices was
addressed in a classic series of papers by Montroll and Weiss thirty years
ago.(14�16) It was proved that the mean walklength before trapping was
given by the expressions

(n)=N(N+1)�6, d=1

(n)=N�(N&1)[A1N ln N+A2N+A3+A4�N], d=2
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where the coefficients [A1, A2, A3, A4] were determined by the lattice
coordination, and

(n) =1.516 386 0591N+O(N 1�2), d=3

for simple cubic lattices. The significant dependence of (n) on the
Euclidean dimension d is clearly displayed in these analytic results. For
given N, the efficiency of trapping increases with increase in d.

Taking together the results presented in the earlier contributions,
refs. 6�12, and the result reported here, the conclusion reached by Montroll
and Weiss on the role of dimensionality in influencing the trapping
efficiency can be extended.

First, if the Hausdorff dimension D is less than or equal to the
Euclidean dimension d of the companion lattice, trapping on the fractal
lattice will be less efficient. Intuitively, fractal lattices tend to be ``more
disordered'' than Euclidean lattices, and this slows down the trapping
process. In fact, as noted in the previous section, values of (n) for the
Sierpinski tower increase with N faster than N ln N, the asymptotic,
dependence which characterizes the companion d=2 lattice.

Second, for the particular fractal sets studied in refs. 6�12, when the
Hausdorff dimension D is greater than the Euclidean dimension d, trapping
on the fractal set was found to be more efficient. The referee has noted,
however, that when D is only slightly larger than d, this ordering may not
hold. The two effects, ``randomness'' versus system dimensionality, may
balance or either one may still ``win'' out in this situation. This phenom-
enon is well known in models of localization in which a distribution of
weak barriers is stronger than a strong one.

Preliminary evidence that self-similarity in the geometrical structure of
the Sierpinski lattice can translate into a self similarity in diffusional flows
was presented in Section 3. The same procedure can be used to determine
whether the overall walklength (n) also satisfies expressions similar to
those found for the first- and second-nearest neighbor sites, and this will be
pursued in further work.
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